Abstract
AbstractThis study investigates the effects of positive horizontal acceleration of the freestream velocity on a pitch‐oscillating VR‐12 airfoil using computational fluid dynamics. The shear stress transport k–ω model, coupled with a low‐Reynolds number correction, was employed for Re <105 during dynamic stall. The flow equations were solved in two‐dimensional, incompressible form using the finite volume method. The study examined various parameters, including positive acceleration values of the inflow and the angle of attack of the airfoil, to determine their impact on lift and drag coefficients, as well as the ratio. Additionally, the maximum lift coefficient was analyzed under different inflow and airfoil motion conditions. The results indicate that aerodynamic force coefficients and the ratio are influenced by both the attack angle and the acceleration of the inflow. Furthermore, inflow acceleration affects the onset of dynamic stall conditions. Generally, inflow acceleration modifies the lift coefficient of the airfoil during the upstroke, while having minimal effect on the drag coefficient, except near dynamic stall points. The findings also suggest that, for a specific airfoil, the sequence of factors with the greatest influence on lift force generation before static stall occurs is as follows: asymmetric airfoil oscillation, symmetrical airfoil oscillation, accelerated inflow, constant velocity inflow, and static airfoil.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.