Abstract
In this work, the dynamic response of jet diffusion flame of burning hydrogen and propane respectively in a longitudinal tube to acoustic standing waves produced from a loudspeaker are studied. For this, 2-D numerical simulations are conducted by using FLUENT to investigate the interaction of acoustics-flow-flame. And acoustic fluctuations are generated by using User Defined Function (UDF). The numerical model is validated first by comparing the numerical results with the experimental measurements. To gain insight on the difference between combustion flame of propane and hydrogen, 19 monitors points are set to gain the data of their distribution of pressure, temperature, mass fraction of H2O and velocity in the longitudinal tube. The result indicates that their difference concentrates on the pressure and mass fraction of H2O. The phase diagrams of pressure and velocity show that the hydrogen combustion flame is more stable than propane, which is beneficial for combustion systems.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.