Abstract
Numerical solutions for high-temperature air flowing past water and methanol droplets and solid spheres, and superheated steam flowing past water droplets were obtained in the Reynolds number range of 10 to 100. The coupled momentum, energy, and specie continuity equations of variable thermophysical properties were solved using finite difference techniques. The numerical results of heat transfer and total drag agree well with existing experimental data. Mass transfer decreases friction drag significantly but at the same time increases pressure drag by almost an equal amount. The net effect is that the standard drag curve for solid spheres can be used for evaporating droplets provided the density is the free stream density and the viscosity of the vapor mixture is evaluated at an appropriate reference temperature and concentration. Both the mass efflux and variable properties decrease heat transfer rates to the droplets.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.