Abstract

AbstractIn this study, a two‐fluid Eulerian–Eulerian model has been carried out applying the kinetic theory of granular flow (KTGF) to study the hydrodynamics and heat transfer behavior of a fluidized bed reactor simultaneously. The effects of different gas–solid flow regimes on the operating conditions and heat transfer rate between the hot air and two types of low and high‐density inert particles are investigated in a fluidized bed dryer. Different gas–solid flow regimes for wood and glass particles of groups A, B, and D of Geldart's classification are simulated to introduce the most optimal flow regime in terms of heat transfer rate and operating costs. The compromise between the heating rate, the height required for the reactor, and the ratio of the final mass to the initial mass of solid particles, which specifies the need for a cyclone separator showed that the bubbling regime of Geldart B powder for low‐density particles and the turbulent regime of Geldart D powder or bubbling regime of Geldart B powder for high‐density particles are the optimal operating conditions and flow regimes. Furthermore, it was concluded that the convective heat transfer is the dominant mechanism, which increases with increasing the air velocity and decreasing the particle diameter in each group.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.