Abstract

The present work exhibits a numerical study comparing the fluid dynamic and thermal fields of turbulent, three-dimensional forced convective cylindrical cavity flows obtained with Large Eddy Simulation (LES) and Reynolds-Averaged Navier Stokes (RANS). In the latter approach, three different closure models are employed: Reynolds Stress Model (RSM), standard k – ε and standard k - ω. It is considered a three-dimensional, incompressible, turbulent fluid flow at the steady state with ReD = 22,000 and Pr = 0.71. The main purpose is to investigate whether discrepancies are noticed in time-averaged and statistics of turbulent flows between LES and RANS predictions. Differences in time-averaged and statistical fields can be important for evaluation of convective fluxes in turbulent flows and combined convective and radiative transfer in participant media, i.e., for study of Turbulence-Radiation Interactions (TRI). The spatially-filtered and time-averaged conservation equations of mass, momentum and energy are solved with the Finite Volume Method (FVM). Results showed that time-averaged and RMS thermal fields obtained with LES and RANS presented reasonable discrepancies in regions near the cavity surfaces, which affects the convective fluxes in this region. For the highest temperature region of the cavity (near its inlet) the predictions obtained with LES and RANS are similar, which can led to similar predictions in heat exchange when thermal radiation is taken into account in optically thin participant media. For optically thick media, where local differences increase their importance, the employment of RANS is not recommended.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.