Abstract
A two dimensional front-tracking method is developed in order to model dendritic growth during solidification processes of pure substances. The method uses a sequential set of moving marker points to describe and track the liquid-solid interface which evolves over a fixed background mesh describing the whole medium. The code behaviour is first checked by a simple stable case of solidification to provide homogeneous velocity at the interface. Then, test examples of unstable solidification cases considering different modes of anisotropy are performed. Finally, interface evolution, with primary and secondary branches, is described, showing the ability of the code to study realistic dendritic growth characteristics.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.