Abstract

ABSTRACT We investigate the possibility of cosmic ray (CR) confinement by charged dust grains through resonant drag instabilities (RDIs). We perform magnetohydrodynamic particle-in-cell simulations of magnetized gas mixed with charged dust and cosmic rays, with the gyro-radii of dust and GeV CRs on ∼au scales fully resolved. As a first study, we focus on one type of RDI wherein charged grains drift super-Alfvénically, with Lorentz forces strongly dominating over drag forces. Dust grains are unstable to the RDIs and form concentrated columns and sheets, whose scale grows until saturating at the simulation box size. Initially perfectly streaming CRs are strongly scattered by RDI-excited Alfvén waves, with the growth rate of the CR perpendicular velocity components equaling the growth rate of magnetic field perturbations. These rates are well-predicted by analytic linear theory. CRs finally become isotropized and drift at least at ∼vA by unidirectional Alfvén waves excited by the RDIs, with a uniform distribution of the pitch angle cosine μ and a flat profile of the CR pitch angle diffusion coefficient Dμμ around μ = 0, without the ‘90○ pitch angle problem.’ With CR feedback on the gas included, Dμμ decreases by a factor of a few, indicating a lower CR scattering rate, because the backreaction on the RDI from the CR pressure adds extra wave damping, leading to lower quasi-steady-state scattering rates. Our study demonstrates that the dust-induced CR confinement can be very important under certain conditions, e.g. the dusty circumgalactic medium around quasars or superluminous galaxies.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call