Abstract

In this paper, a 3D model of a flat circuit board with a heat generating electronic chip mounted on it has been studied numerically. The conjugate heat transfer including the conduction in the chip and convection with the surrounding fluid has been investigated numerically. Computational fluid dynamics using the finite volume method has been used for modeling the conjugate heat transfer through the chip and the circuit board. Conjugate heat transfer has broad applications in engineering and industrial applications in design of cooling off electronic components. Effects of various inlet velocities have been studied on the heat transfer variation and temperature of the circuit board. Numerical results show that the temperature of the chip reduces as the velocity of the inlet fluid flow increases.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.