Abstract

Micro- and conventional compressible, turbulent tube flows were solved numerically in this study. The numerical procedure solves the compressible, turbulent boundary-layer equations using an implicit finite-difference scheme. The parabolic character of the boundary-layer equations renders the numerical procedure a very efficient, accurate, and robust tool for studying compressible microtube flows. The Baldwin–Lomax two-layer turbulence model is adopted in the numerical procedure. The numerically calculated friction factors are compared with the Blasius correlation, the Fanno line flow prediction, and the experimental data. The comparison shows that the numerically calculated friction factors for conventional tube flows agree quite well with the Blasius correlation. The numerical friction factors for microtube flows are larger than the Blasius correlation due to the compressibility effects. They also are greater than the Fanno line flow prediction and the experimental data. This is because the Fanno line flow and the experimental data assume that the flow is adiabatic, but in reality, compressible, turbulent microtube flows are neither adiabatic nor isothermal, as demonstrated by the numerical results in this study.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.