Abstract

The shock wave/boundary-layer interaction of chemically reacting flow in a shock tube is studied using a high-order point-implicit solver. The solver employs a high-resolution weighted essentially non-oscillatory (WENO) scheme to capture the complex shock structures, together with a point-implicit method to overcome the stiffness of the chemical production term in the multicomponent Navier–Stokes equations. The numerical code is carefully validated with three benchmark tests, which demonstrates the robustness and good performance of the combined numerical methods. The unsteady interaction process between the shock wave and boundary layer in a two-dimensional shock tube is clearly captured with detailed flow patterns in the simulation. Simulation results show that regular vortex arrangements appear in the flow field for the case of Mach number 2.37, while for the case of Mach number 3.15, the vortex structures break up and chemical nonequilibrium effects become apparent. The influence of real gas effects on shock wave/boundary-layer interaction is further identified on the temperature field and triple point trajectory.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call