Abstract

Capacitance-voltage (C-V) characteristics of double-gate ultrathin silicon-on-insulator (SOI) MOSFETs are numerically investigated in detail. The measured back-gate bias dependence is reproduced by the Poisson-Schrodinger solver including the highly precise physical models for many-body interactions of carrier-carrier and carrier-ion, and for incomplete ionization of doping impurities in whole semiconductor regions of n+poly-Si/oxide/SOI/oxide/p-Si capacitor including the volume inversion. In addition, we study the higher subband effect at higher temperature in detail, in order to deduce the impacts of self-heating and nonstatic transport

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.