Abstract

Thermocapillary- and buoyancy-driven convection in open cavities with differentially heated endwalls is investigated by numerical solutions of the two-dimensional Navier-Stokes equations coupled with the energy equation. We studied the thermocapillary and buoyancy convection in the cavities, filled with low-Prandtl-number fluids, with two aspect-ratiosA=1 and 4, Grashof number up to 105 and Reynolds number ⋎Re⋎≤104. Our results show that thermocapillary can have a quite significant effect on the stability of a primarily buoyancy-driven flow, as well as on the flow structures and dynamic behavior for both additive effect (i.e., positiveRe) and opposing effect (i.e., negativeRe).

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call