Abstract

A numerical study is presented for the two-dimensional flow of a micropolar fluid in a porous channel. The channel walls are of different permeability. The fluid motion is superimposed by the large injection at the two walls and is assumed to be steady, laminar and incompressible. The micropolar model due to Eringen is used to describe the working fluid. The governing equations of motion are reduced to a set of non-linear coupled ordinary differential equations (ODEs) in dimensionless form by using an extension of Berman’s similarity transformations. A numerical algorithm based on finite difference discretization is employed to solve these ODEs. The results obtained are further improved by Richardson’s extrapolation for higher order accuracy. Comparisons with the previously published work are performed and are found to be in a good agreement. It has been observed that the velocity and microrotation profiles change from the most asymmetric shape to the symmetric shape across the channel as the parameter R or the permeability parameter A are varied between their extreme values. The results indicate that larger the injection velocity at a wall relative to the other is, smaller will be the shear stress at it than that at the other. The position of viscous layer has been found to be more sensitive to the permeability parameter A than to the parameter R. The micropolar fluids reduce shear stress and increase couple stress at the walls as compared to the Newtonian fluids.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.