Abstract

We propose and numerically investigate a novel ultra-broadband solar absorber by applying iron in a 2D simple metamaterial structure. The proposed structure can achieve the perfect absorption above 95% covering the wavelength range from 400 to 1500nm. The average absorption reaches 97.8% over this wavelength range. The broadband perfect absorption is caused by the excitation of localized surface plasmon resonance and propagating surface plasmon resonance. We first propose and demonstrate that the iron is obviously beneficial to achieve impedance matching between the metamaterial structure and the free space over an ultra-broad frequency band in the visible and near-infrared region, which play an extremely important role to generate an ultra-broadband perfect absorption. In order to further broaden the absorption band, we also demonstrate the perfect absorption exceeding 92% for the 400-2000nm range by adding the number of metal-dielectric pairs and using both gold and iron simultaneously in the proposed structure. The average absorption of the improved absorber reaches 96.4% over the range of 400-2000nm. The metamaterial absorbers using iron are very promising for many applications, which can greatly broaden the perfect absorption band in the solar spectrum and, meanwhile, can enormously reduce the cost in the actual production.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.