Abstract
This paper studies physical phenomena, performance and optimal operating point of an AC MHD generator under the slip value by using a numerical simulation. The double-side exciting winding of the generator is considered. Its structure consists of a channel, an insulator and stators. Channel type is a flat rectangular and the liquid flows along the channel as a conductor. Channel wall acted as an insulator separates metal fluid and stator coils. The top and bottom stator winding of the generator is connected to polyphase system. Under this condition, it can produce a magnetic field by means of time harmonic function in the same direction of the metal fluid. An interaction between traveling wave and metal fluid is explained by finite element method under Maxwell's equation and Ohm law. The distribution of magnetic vector potential and magnetic flux density throughout channel is evidently shown in xy-plane. Power flow in AC MHD generator is evaluated by slip value. The optimal operating point of an AC MHD generator performance is reported by active power 0.99kW, reactive power 50kVAR, mechanical power 1.58kW, power dissipation 0.59kW and electrical efficiency 62.5%.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.