Abstract

The flow associated with a synthetic jet transitioning to turbulence in an otherwise quiescent external flow is examined using time-accurate three-dimensional numerical simulations. The incompressible Navier–Stokes solver uses a second-order accurate scheme for spatial discretization and a second-order semi-implicit fractional step method for time integration. The simulations are designed to model the experiments of C. S. Yaoet al. (Proc. NASA LaRC Workshop, 2004) which have examined, in detail, the external evolution of a transitional synthetic jet in quiescent flow. Although the jet Reynolds and Stokes numbers in the simulations match with the experiment, a number of simplifications have been made in the synthetic jet actuator model adopted in the current simulations. These include a simpler representation of the cavity and slot geometry and diaphragm placement. Despite this, a reasonably good match with the experiments is obtained in the core of the jet and this indicates that for these jets, matching of these key non-dimensional parameters is sufficient to capture the critical features of the external jet flow. The computed results are analysed further to gain insight into the dynamics of the external as well as internal flow. The results indicate that near the jet exit plane, the flow field is dominated by the formation of counter-rotating spanwise vortex pairs that break down owing to the rapid growth of spanwise instabilities and transition to turbulence a short distance from the slot. Detailed analyses of the unsteady characteristics of the flow inside the jet cavity and slot provide insights that to date have not been available from experiments.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.