Abstract

Abstract The present work is focused on the numerical study of a solar-powered Stirling engine, with the particularity that the solar radiation is injected through a transparent top cover. Thus, the working fluid absorbs the heat across a porous layer of a steel woven wire screen placed alongside the inner side of the transparent wall. The engine output net power and efficiency are studied as a function of the porosity, engine speed, temperature of the expansion chamber, and wire diameter of the screen. It is found that the engine efficiency remains practically constant for porosity values over 0.7, but there is a relevant increase of the engine output net power compared to the same working conditions without the absorbing layer. For a given porosity value, the most significant increase of net power due to introducing the porous layer was reached when doubling the engine speed resulting in an increment close to 40%.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.