Abstract

In this study, a complete three-dimensional numerical simulation of single bubble sliding on a downward facing heater surface is carried out. The continuity, momentum, and energy equations are solved using a finite-difference method. Level-set method is used to capture the liquid-vapor interface. The shape of the sliding bubble changes from a sphere, to an ellipsoid and finally to a bubble-cap. The wall heat flux downstream of the sliding bubble is much larger than that upstream of the bubble. This indicates that wall heat transfer is significantly enhanced by sliding motion of the bubble. The bubble shape and sliding distance predicted from numerical simulations is compared with data from experiments.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.