Abstract
A novel micro-mixer based on the induced-charge electrokinetic motion of an electrically conducting particle is proposed and numerically demonstrated in this paper. For most microfluidic applications, it is desired to mix different streams of solutions rapidly in a continuous flow mode. Therefore, in this work, we consider a mixing chamber containing an electrically conducting particle and the mixing chamber is located in the middle of a microchannel. Vortices are generated around the electrically conducting particle in an aqueous solution due to the interaction of the applied electric field and the induced surface charge on the particle. These vortices will enhance significantly the mixing of different solutions around the particle. The effectiveness of mixing the two streams entering the mixing chamber is numerically studied as functions of the applied electric field. Excellent mixing can be achieved in this system under two perpendicularly applied electric fields. The proposed micro-mixer is simple and easy to be fabricated for lab-on-a-chip applications.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.