Abstract
We design and fabricate a nonplanar two-stage surface plasmonic lens composed of concentric circular slits for exciting propagating surface plasmonic wave and a center-positioned cone-like nanoparticle for generating localized surface plasmonic waves. The numerical investigation based on the finite difference in time domain method is performed. It is found that, when a radially polarized beam illumination is applied, a highly confined electric field with full width half maximum of as small as 6 nm and the transmission enhancement factor of six orders higher than the incident beam is achievable. The optimization design is conducted through comparison of different conic angles and different materials of the cone-like nanoparticles.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.