Abstract
Feasibility of a gyrotron for the dynamic nuclear polarization (DNP) purpose, integrated with nuclear magnetic resonance (NMR) spectrometer inside a single cryomagnet, is analyzed on the basis of numerical simulations. The necessary condition for DNP is matching of the gyrotrino and DNP frequencies. This imposes a strong restriction on the gyrotron operating voltage, which should be less than 2 kV. The most part of the uniform magnetic field region in the cryomagnet is occupied by a sample with NMR probe, so there is a very limited space for the gyrotron cavity. This dictates a number of peculiarities for the gyrotrino design, in particular, the diffraction power output from the cathode end of the cavity and collecting of a thin electron beam in a strong magnetic field. According to simulations, the gyrotrino operating at the fundamental cyclotron resonance with a voltage of 1.5 kV can provide an output power of 10–20 W at a frequency of 264 GHz, which is suitable for many NMR-DNP experiments.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.