Abstract

BackgroundHeat transfer enhancement technology concerns with the aim of developing more efficient systems to satisfy the increasing demands of many applications in the fields of automotive, aerospace, electronic and process industry. A solution for obtaining efficient cooling systems is represented by the use of confined or unconfined impinging jets. Moreover, the possibility of increasing the thermal performances of the working fluids can be taken into account, and the introduction of nanoparticles in a base fluid can be considered.ResultsIn this article, a numerical investigation on confined impinging slot jet working with a mixture of water and Al2O3 nanoparticles is described. The flow is turbulent and a constant temperature is applied on the impinging. A single-phase model approach has been adopted. Different geometric ratios, particle volume concentrations and Reynolds number have been considered to study the behavior of the system in terms of average and local Nusselt number, convective heat transfer coefficient and required pumping power profiles, temperature fields and stream function contours.ConclusionsThe dimensionless stream function contours show that the intensity and size of the vortex structures depend on the confining effects, given by H/W ratio, Reynolds number and particle concentrations. Furthermore, for increasing concentrations, nanofluids realize increasing fluid bulk temperature, as a result of the elevated thermal conductivity of mixtures. The local Nusselt number profiles show the highest values at the stagnation point, and the lowest at the end of the heated plate. The average Nusselt number increases for increasing particle concentrations and Reynolds numbers; moreover, the highest values are observed for H/W = 10, and a maximum increase of 18% is detected at a concentration equal to 6%. The required pumping power as well as Reynolds number increases and particle concentrations grow, which is almost 4.8 times greater than the values calculated in the case of base fluid.List of symbols

Highlights

  • Heat transfer enhancement technology concerns with the aim of developing more efficient systems to satisfy the increasing demands of many applications in the fields of automotive, aerospace, electronic and process industry

  • Heat transfer enhancement is very important in the industry, and several techniques are employed to realize this aim

  • The results showed that the use of Al2O3 nanoparticles in laminar jets enhanced the heat transfer but for the turbulent jets Al2O3-water nanofluid had a lower performance for heat removal compared with the base fluid

Read more

Summary

Introduction

Heat transfer enhancement technology concerns with the aim of developing more efficient systems to satisfy the increasing demands of many applications in the fields of automotive, aerospace, electronic and process industry. A solution for obtaining efficient cooling systems is represented by the use of confined or unconfined impinging jets. Whether confined or unconfined, have been widely used for efficient cooling in industrial applications as a means of providing highly localized heat transfer coefficients, representing a possible solution. Liquid jets have possible application to the cooling of heat engines [5,7], thermal control in electronic devices [8,9,10] and in the thermal treatment of metals and material processing [11,12,13,14]

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call