Abstract

During material forming process (metal, glass, polymer), one stage is the solidification of the material, from a bulk melt part. Occurrence of solid particles in the melt material may alter the properties of the final product, as aggregation of particles potentially induces a local weakness (bad shape, mechanical or thermal properties, for example). Considering one particle, a wide range of thermal and dynamic phenomena can be observed: a particle settling is mainly due to Archimedes forces. Free convection due to gravity effects can increase the fluid flow (which is defined as an assisting flow) or may limit it (defined as an opposing flow). A high fluid‐particle relative velocity also implies forced convection. The competition between the two thermal phenomena (so‐called mixed convection) widely influences the particle transport. Many works have studied the fluid velocity field induced by a cylinder or a spherical particle in a isothermal medium, and have highlighted transitions of flow regime (a laminar flow at low velocity, a deviation in the particle transport at a moderate velocity and various flow structures at a high velocity). Some studies have taken into account heat transfer between the particle and the fluid, and focused on the thermal effects upon the particle fluid velocity. Experiments are difficult (or impossible) to lead, since some materials (like metals for example) do not allow visualizing the particle in the melt fluid. We propose in the present study to carry out the numerical 3D‐simulation of a cold particle submitted to a fluid flow, in order to link the fluid‐particle thermal transfer and the fluid flow properties. A volume of fluid method is used, on a fixed Cartesian grid to determine the particle transport, the fluid flow and heat transfers in both the fluid and the particle. The domain must be large enough to avoid wall effects. The mixed convection is quantified by the Richardson number (Ri). The aim of this paper will consist in studying the influence of Ri (by modifying the particle temperature) and to link this parameter to the flow regime and heat transfer.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call