Abstract
In this study, the parabolic trough collector's (PTC) performance is analyzed. In order to achieve this goal, the adopted procedure comprises two main steps. In the first step, the concentrated solar heat flux densities in the solar concentrator focal zone are calculated by soltrace software. In the second step, computational fluid dynamics (CFD) simulations are carried out to analyze and to optimize the thermal performance of the tube receiver. The calculated heat flux densities by soltrace software are used as wall heat flux boundary conditions for the receiver tube. The effect of the receiver tube diameter variation on the PTC thermal performance is studied. A new type of receiver tube is tested. This latter is covered with a metallic thickness. The performance of tube receiver covered with a metallic layer for different diameters is compared to those of the same diameters without the addition of metallic thickness. It has been found that increasing tube metallic thickness enhances the performance of PTC system comparing to the tubes of the same diameter and crossed by the same flow rates.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.