Abstract
Abstract This paper presents a numerical investigation on the design resistance of extruded aluminum beams subjected to concentrated loads. The study is conducted through nonlinear finite element analysis considering large displacements, initial imperfection, and taking into account the strain hardening characteristics of common aluminum alloys. The numerical model is validated against experimental works taken from the literature. Thereafter, an extensive parametric study is carried out covering a wide range of beam geometries and slenderness ratios. Resistances computed numerically are compared with those calculated using the current design provisions in the EC9 for aluminum beams subject to concentrated loads, indicating that the EC9 provisions underestimate the resistances. Then, a new resistance function is calibrated performing a statistical evaluation of experimental and numerical results. The reliability of the recalibrated resistance function is assessed according to EN 1990, the results show improvements in the predicted resistances. Finally, the use of more accurate structural design provisions enhances the possibility of higher economic benefits, and by using less material, the carbon footprint originated from aluminum production can be reduced.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.