Abstract

Three-dimensional thermal and mechanical coupled finite element models are proposed to study the structural behaviours of shear connectors under fire. Concrete slabs, steel beams and shear connectors are modelled with eight-noded solid elements, and profiled steel deckings are modelled with eight-noded shell elements. Thermal, mechanical and geometrical nonlinearities are incorporated into the models. With the proper incorporation of thermal and mechanical contacts among steel beams, shear connectors, steel deckings and concrete slabs, both of the models are verified to be accurate after the validation against a series of push-out tests in the room temperature or under the standard fire. Various thermal and mechanical responses are also extracted and observed in details from the results of the numerical analyses, which gives a better understanding of the structural behavior of shear connectors under elevated temperatures.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.