Abstract

Saltwater intrusion in coastal aquifers depends on the distribution of hydraulic properties, on the climate, and on human interference such as land reclamation. In order to analyze the key processes that control saltwater intrusion, a hypothetical steady-state salt distribution in a representative cross-section perpendicular to the coastline was calculated using a two-dimensional density-dependent solute transport model. The effects of changes in groundwater recharge, lowering of drainage levels, and a rising sea level on the shape and position of the freshwater/saltwater interface were modeled in separate simulations. The results show that the exchange of groundwater and surface water in the marsh areas is one of the key processes influencing saltwater intrusion. A rising sea level causes rapid progression of saltwater intrusion, whereas the drainage network compensates changes in groundwater recharge. The time scale of changes resulting from altered boundary conditions is on the order of decades and centuries, suggesting that the present-day salt distribution does not reflect a steady-state of equilibrium.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call