Abstract

ABSTRACTIn the recent past, in order to cater lateral loads, provision of fins to monopiles is evolving as an option for enhancing their lateral load capacity. Numerical and experimental studies pertaining to fin piles subjected to lateral loading are very limited. It is very difficult to understand the behaviour of fin piles through conventional soil pile theories, due to their different fin configurations. In the present study, three-dimensional finite element analyses were performed on regular piles (pile without fins) as well as fin piles. For fin piles, different fin lengths, orientation and position were considered during the analyses. The results have shown that fins placed at the top portion of the piles are more effective than fins placed at bottom of the pile. In all cases, fin piles exhibited more lateral load-carrying capacity compared to regular piles. When fin’s length is less than half of the pile length, lateral load-carrying capacity of fin piles is same irrespective of their orientation. However, fin’s orientation is significant, when fin length is more than 0.5 times length of piles, star fin piles exhibit more lateral load-carrying capacity compared to diagonal and straight fin piles. Fin piles experienced less bending moment compared to regular piles for a given lateral load. Further, it was also noticed that lateral load-carrying capacity of the fin piles depend upon fins’ length and their orientation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call