Abstract
In this present study, periodically positioned triangular shaped ribs having a round top corner at the bottom with groove positioned on the top side of the plate is analyzed at laminar flow conditions. The numerical results obtained for the heated plate with rib-groove geometry are compared with that of the flat plate kept under similar conditions. At lower air flow velocity, the Nusselt number of the flat plate improved from 400 to 1407 with the provision of triangular ribs-groove arrangement in it. Similarly, it improved from 850 to 6420 at higher air flow velocity with triangular ribs-groove arrangement. Higher Nusselt number values leads to a higher heat transfer coefficient values. Therefore, the triangular ribs-groove geometry gives an enhanced rate of heat transfer with minimum pressure drop. The study shows that irrespective of geometry, the rate of heat transfer is relying on fluid (air in this present case) flow velocity over heated plate, fluid flow contact with the heated plate and surface area of the heated plate.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.