Abstract

The increasing demands of better efficiency of modern advanced gas turbine require higher turbine inlet temperatures, which gives great challenges to turbine blade designers. However, the temperature limits of turbine blade material are not high enough to ensure its survival in such incredible operating temperature. Hence, both internal and external cooling approaches have been developed and widely used in today’s turbine blade. To internal cooling problems, a variety of cooling enhancement approaches, such as impingement and turbulators, are employed in order to meet the different needs in leading, middle and trailing region. One of the most critical parts in turbine blade is trailing edge where it is hard to cool due to its narrow shape. Pin-fins are widely used to cool the trailing edge of rotor and stator blades of gas turbine engine. Pin-fins offer significant heat transfer enhancement, they are relatively easy to fabricate and offer structural support to the hollow trailing edge region. The flow physics in a pin-fin roughened channel is very complicated and three-dimensional. In this work, we have studied the effect of channel orientation on heat transfer in a rotating wedge-shaped cooling channel using numerical methods. Qiu [1] studied experimentally heat transfer effects of 5 different angles of wedge shaped channel orientation for the inlet Reynolds number (5100 to 21000) and rotational speed (zero to 1000 rpm), which results in the inlet Rotation number variation from 0 to 0.68. They observed that compared to the non-rotating condition, there is about 35% overall heat transfer enhancement under highest rotation number. The above said results are validated using current studies with Computational Fluid Dynamics (CFD) revealed that rotation increases significantly the heat transfer coefficient on the trailing surface and reduces the heat transfer coefficient on the leading surface. This is due to the higher velocities associated with the converging geometry near trailing surface.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call