Abstract

The effects of large neutrally buoyant particles on the flow instability and turbulence transition in pipe flow are investigated with the fictitious domain method. The periodic boundary condition is introduced in the streamwise direction. The work comprises two parts. In the first part, the pressure gradient is kept constant, and the purpose is to study the particle-induced flow instability. In our previous study [X. Shao, Z. Yu, and B. Sun, Phys. Fluids 20, 103307 (2008)10.1063/1.3005427], it was observed that a particle of a/R = 0.1 (a and R being the radii of the particle and the tube, respectively) induced the flow structure characterized by two pairs of weak and stable streamwise vortices at the Reynolds number of 1000. In the present study, our results show that the flow structure loses stability at the Reynolds number of 1500. However, it is interesting that the system eventually reaches a stable state: the particle spirals forward along the tube wall, accompanied by a stable flow structure for the case of one single particle in the computational domain. In the second part of the present study, the flow flux is kept constant, and the purpose is to examine the effects of particles on the critical Reynolds number based on the mean velocity. Our results show that large particles trigger the turbulence transition at low particle volume fractions, but delay the transition as the particle volume fraction exceeds a critical value, in agreement with the previous experimental observation [J.-P. Matas, J. F. Morris, and É. Guazzelli, Phys. Rev. Lett. 90, 014501 (2003)10.1103/PhysRevLett.90.014501].

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call