Abstract
There is a growing body of evidence that slow brain rhythms are generated by simple inhibitory neural networks. Sequential switching of tonic spiking activity is a widespread phenomenon underlying such rhythms. A realistic generative model explaining such reproducible switching is a dynamical system that employs a closed stable heteroclinic channel (SHC) in its phase space. Despite strong evidence on the existence of SHC, the conditions on its emergence in a spiking network are unclear. In this paper, we analyze a minimal, reciprocally connected circuit of three spiking units and explore all possible dynamical regimes and transitions between them. We show that the SHC arises due to a Neimark-Sacker bifurcation of an unstable cycle.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Chaos: An Interdisciplinary Journal of Nonlinear Science
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.