Abstract

Mathematical modeling of infiltration dynamics of liquid Cu-Si alloy into porous carbon is presented. Two-dimensional infiltration equations are developed using the Washburn equation in the limit of both interface and diffusion control, for situations where the capillary radius decreases either linear or parabolic, and the contact angles are assumed to exponentially decrease with time during infiltration. One major manufacturing process for the Cu-Si/C composites is liquid melt infiltration. This article focuses on nonequilibrium wetting effects and offers a fundamental approach to these complex kinetic phenomena.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.