Abstract
Numerical studies on hyperbolic initial-boundary value problems (IBVP) have been performed using high-order difference operators satisfying a summation by parts rule. To assure that the numerical solution is strictly stable two recently developed methods by Carpenter et al. (1994) and Olsson (1995) to implement the analytic boundary conditions without destroying the summation by parts rule have been used. Theoretical and numerical results show that the numerical methods presented here are strictly stable and have a convergence rate that agrees well with the theory of Gustafsson (1975, 1981).
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.