Abstract
Introduction: Artery blockage is the most prevailing cause of Coronary Artery Disease (CAD). The presence of blockage inside the artery breaks the continuity of blood supply to the other part of the body and therefore causes for heart attack. Objective: Two different three-dimensional models namely; normal and 50% plaque are used for the numerical studies. Five inlet velocities 0.10, 0.20, 0.50, 0.70 and 0.80 m/s are considered corresponding to different blood flow conditions to study the effect of velocity on the human heart. Methods: Finite Volume Method (FVM) based Computational Fluid Dynamics (CFD) technique is executed for the numerical simulation of blood flow. Hemodynamic factors are computed and compared for the two geometrical models (Normal Vs. Blockage model). Results: Blood hemodynamic factor i.e. Area Average Wall Shear Stress (AAWSS) ranges from 4.1-33.6 Pa at the façade of the Left Anterior Descending (LAD) part of the Left Coronary Artery (LCA) for the constricted artery. Conclusion: The predominantly low WSS index is analogous to the normal artery affirms the existence of plaque. From the medical point of view, this can prove as an excellent factor for early diagnosis of CAD. Therefore, a hindrance can be created in the increasing frequency of Myocardial Infarction (MI). In future research we will adopt the unsteady flow with both rigid and elastic arterial wall.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Recent Advances in Computer Science and Communications
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.