Abstract
We present the results of an exploratory study of the numerical stochastic perturbation theory (NSPT) applied to the four dimensional twisted Eguchi-Kawai (TEK) model. We employ a Kramers type algorithm based on the Generalized Hybrid Molecular Dynamics (GHMD) algorithm. We have computed the perturbative expansion of square Wilson loops up to O(g8). The results of the first two coefficients (up to O(g4)) have a high precision and match well with the exact values. The next two coefficients can be determined and even extrapolated to large N, where they should coincide with the corresponding coefficients for ordinary Yang-Mills theory on an infinite lattice. Our analysis shows the behaviour of the probability distribution for each coefficient tending to Gaussian for larger N. The results allow us to establish the requirements to extend this analysis to much higher order.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.