Abstract

AbstractIn this paper a stabilized finite element scheme for the poroelasticity equations is proposed. This method, based on the perturbation of the flow equation, allows us to use continuous piecewise linear approximation spaces for both displacements and pressure, obtaining solutions without oscillations independently of the chosen discretization parameters. The perturbation term depends on a parameter which is established in terms of the mesh size and the properties of the material. In the one‐dimensional case, this parameter is shown to be optimal. Some numerical experiments are presented indicating the efficiency of the proposed stabilization technique. Copyright © 2008 John Wiley & Sons, Ltd.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.