Abstract

Two-dimensional gravity–capillary waves can be modeled by the forced Korteweg–de Vries (fKdV) equation in subcritical flows when the Bond number is greater than one third. Four steady symmetric depression wave solutions and two elevation wave solutions for the fKdV equation have been found and time evolutions of their magnitude or spatial perturbations have been observed. We approach the fKdV equation as a stochastic equation by modeling the perturbation as a random variable and examine the stabilities of the steady solutions based on the polynomial chaos expansion framework. Polynomial chaos also provides surfaces, which encompass random fluctuations of unstable waves. The effects of several parameters on the stabilities and the surfaces have been also considered.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.