Abstract

We present a method for detecting right half plane (RHP) roots of fractional order polynomials. It is based on a Nyquist-like criterion with a system-dependent contour which includes all RHP roots. We numerically count the number of origin encirclements of the mapped contour to determine the number of RHP roots. The method is implemented in Matlab, and a simple code is given. For validation, we use a Galerkin based strategy, which numerically computes system eigenvalues (Matlab code is given). We discuss how, unlike integer order polynomials, fractional order polynomials can sometimes have exponentially large roots. For computing such roots we suggest using asymptotics, which provide intuition but require human inputs (several examples are given).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.