Abstract
In this paper, the approximate solutions for two different type of two-dimensional nonlinear integral equations: two-dimensional nonlinear Volterra-Fredholm integral equations and the nonlinear mixed Volterra-Fredholm integral equations are obtained using the Laguerre wavelet method. To do this, these two-dimensional nonlinear integral equations are transformed into a system of nonlinear algebraic equations in matrix form. By solving these systems, unknown coefficients are obtained. Also, some theorems are proved for convergence analysis. Some numerical examples are presented and results are compared with the analytical solution to demonstrate the validity and applicability of the proposed method.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Applied Mathematics-A Journal of Chinese Universities
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.