Abstract

SummaryA computational method is presented for solving numerically the three dimensional Euler equations for transonic flow around practical aircraft forebodies. The Euler solver is pseudo-time dependent, split and cast in finite volume form. Shock waves are captured crisply without the need for additional smoothing by means of an operator-switching facility which more accurately reflects the direction of propagation of signals.The method is illustrated by examples of computed external, axisymmetric flows and some, simulated, realistic aircraft fore-bodies. The computational meshes employed in the three dimensional cases are essentially of cylindrical polar, flow conforming, type and relatively coarse. Closer attention to the mesh generation is expected to refine the results presented here. The method is versatile, robust, and holds promise for treating complex three dimensional geometries within economically viable run times.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.