Abstract
So far the theory and numerical practice of stochastic partial differential equations (SPDEs) have dealt almost exclusively with Gaussian noise or Levy noise. Recently, Mikulevicius and Rozovskii (Stoch Partial Differ Equ Anal Comput 4:319–360, 2016) proposed a distribution-free Skorokhod–Malliavin calculus framework that is based on generalized stochastic polynomial chaos expansion, and is compatible with arbitrary driving noise. In this paper, we conduct systematic investigation on numerical results of these newly developed distribution-free SPDEs, exhibiting the efficiency of truncated polynomial chaos solutions in approximating moments and distributions. We obtain an estimate for the mean square truncation error in the linear case. The theoretical convergence rate, also verified by numerical experiments, is exponential with respect to polynomial order and cubic with respect to number of random variables included.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Stochastics and Partial Differential Equations: Analysis and Computations
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.