Abstract

We study the numerical solution of optimal control problems associated with two-dimensional viscous incompressible thermally convective flows. Although the techniques apply to more general settings, the presentation is confined to the objectives of minimizing the vorticity in the steady state case and tracking the velocity field in the non-stationary case with boundary temperature controls. In the steady state case we develop a systematic way to use the Lagrange multiplier rules to derive an optimality system of equations from which an optimal solution can be computed; finite element methods are used to find approximate solutions for the optimality system of equations. In the time-dependent case a piecewise-in-time optimal control approach is proposed and the fully discrete approximation algorithm for solving the piecewise optimal control problem is defined. Numerical results are presented for both the steady state and time-dependent optimal control problems.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call