Abstract

In this paper, an extended fourth-order Runge–Kutta method is studied to approximate the solutions of first-order fuzzy differential equations using a generalized characterization theorem. In this method, new parameters are utilized in order to enhance the order of accuracy of the solutions using evaluations of both f and f′, instead of using the evaluations of f only. The proposed extended Runge–Kutta method and its error analysis, which guarantees pointwise convergence, are given in detail. Furthermore, the accuracy and efficiency of the proposed method are demonstrated in a series of numerical experiments.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.