Abstract

The spectral relaxation method is a very powerful tool which was applied in this paper to get the numerical solution for the system of nonlinear ordinary differential equations which describe the problem of fluid flow of a Powell–Eyring model past an exponentially shrinking sheet with the presence of magnetic field and thermal radiation. The introduced method is based on the spectral relaxation method, which is successfully used to solve this type of equations. Also, this method is developed from the Gauss–Seidel idea of reducing the governing nonlinear system of ordinary differential equations into smaller systems of linear equations. Likewise, the influences of the governing parameters on the velocity and temperature profiles are studied graphically. Results of this study shed light on the accuracy and efficiency of the proposed method in solving this type of the nonlinear boundary layer equations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.