Abstract

This paper describes an algorithm for obtaining approximate solutions to a variety of well-known Lane-Emden type equations. The algorithm expands the desired solution y(x) ≃ yN(x), in terms of shifted Chebyshev polynomials of first kind such that yN(i)(0) = y(i)(0) (i = 0, 1, ..., N). The derivative values y(j)(0) for j = 2, 3, ..., are computed by using the given differential equation and its initial conditions. This makes approximate solutions more consistent with the exact solutions of given differential equations. The explicit expressions of the expansion coefficients of yN(x) are obtained. The suggested method is much simpler compared to any other method for solving this initial value problem. An excellent agreement between the exact and the approximate solutions is found in the given examples. In addition, the error analysis is presented.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.