Abstract

Fractional diffusion equations are useful for applications in which a cloud of particles spreads faster than predicted by the classical equation. In a fractional diffusion equation, the second derivative in the spatial variable is replaced by a fractional derivative of order less than two. The resulting solutions spread faster than the classical solutions and may exhibit asymmetry, depending on the fractional derivative used. Fractional reaction–diffusion equations combine the fractional diffusion with a classical reaction term. In this paper, we develop a practical method for numerical solution of fractional reaction–diffusion equations, based on operator splitting. Then we present results of numerical simulations to illustrate the method, and investigate properties of numerical solutions. We also discuss applications to biology, where the reaction term models species growth and the diffusion term accounts for movements.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.