Abstract

Mechanical diffusion of chloride ions in reinforced concrete (RC) structures varies in time and space, and depends on uncertain factors such as material properties, temperature, humidity, and aging. In this paper, different scenarios considering the time of corrosion initiation and the influence of the chloride diffusion coefficient for different loadings (i.e., constant, sinusoidal, Gaussian, and random) were proposed. Stochastic analyses were carried out to estimate the probability of failure of steel bars, and to evaluate the influences of the internal and external factors. Advanced numerical solutions were developed to account for these influences under non-constant diffusion coefficient and non-steady-state condition. Results show that the chloride content can assume low values by using the oscillations of the generic function (e.g., sinusoidal and general) instead of constant function. The influence of the temperature appears relevant. The 3D analyses, considering the random variability, show that chloride content can be higher than ~1.50 compared to chloride content using traditional approaches. Stochastic approaches plus advanced solutions allow, in a more complete way, the sustainability decision-making process during the design phase, maintenance, inspections, and repair.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.