Abstract
This paper focuses on the advancement of weak Galerkin (WG) finite element methods for addressing two-dimensional and three-dimensional Biharmonic interface problems with polygonal/polyhedral meshes. The WG method has been demonstrated to be accurate and efficient, providing optimal order error estimates in discrete H2 and standard L2 norms. A series of extensive numerical tests are conducted to validate the WG solutions, showcasing the flexibility, stability, and robustness of the proposed method for handling both smooth and complicated interfaces.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.