Abstract

Abstract In this study, a method combined with both Euler polynomials and the collocation method is proposed for solving linear fractional differential equations with delay. The proposed method yields an approximate series solution expressed in the truncated series form in which terms are constituted of unknown coefficients that are to be determined according to Euler polynomials. The matrix method developed for the linear fractional differential equations is improved to the case of having delay terms. Furthermore, while putting the effect of conditions into the algebraic system written in the augmented form in which the coefficients of Euler polynomials are unknowns, the condition matrix scans the rows one by one. Thus, by using our program written in Mathematica there can be obtained more than one semi-analytic solutions that approach to exact solutions. Some numerical examples are given to demonstrate the efficiency of the proposed method.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.